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Supplementary Figure S1 |Abstraction of the setup. Q1 and Q2 depict a pair of quantum systems with inputs A and
B and outputs X and Y respectively. Ξ is a system which represents the additional information provided by the extended
theory. Although these three systems (solid boxes) can be independently manipulated, they form parts of a larger system
(dotted box). While no restriction is placed on the internal behaviour of the larger system, it follows from Part I of the
proof that the combined distribution, PXY Z|ABC , is non-signalling.
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SUPPLEMENTARY METHODS

FORMAL STATEMENT OF THE CLAIM

In this section, we provide a formal description of our result and the assumptions it is based on. Their physical
significance is explained in the main text.

Definitions

Definition 1. A spacetime random variable (SV), X, is a random variable1 together with a set of coordinates
(t, r1, r2, r3) ∈ R4.

The coordinates can be used to define an order relation between SVs, which one may interpret as a time ordering
within relativistic spacetime. (Note, however, that on a formal level, we do not require any assumptions about
relativity theory.)

Definition 2. We say that a pair (A,X) of SVs is time-ordered, denoted A X, if the coordinate (t, r1, r2, r3) of A
lies in the backward lightcone of the coordinate (t′, r′1, r

′
2, r
′
3) of X, i.e., (t− t′)2 ≥ ||r − r′||2, t ≤ t′. Furthermore, we

say that two time-ordered pairs A X and B  Y are spacelike separated if A 6 Y and B 6 X.

The next two definitions refer to quantum theory or, more precisely, quantum measurements. They will be used
later for the formulation of Assumption QM.

Definition 3. A quantum measurement, denoted (A  X, {Ea
x}a,x, HS), is a pair of time-ordered SVs, A  X,

called input and output, respectively, together with a family of measurement operators {Ea
x}a,x on a Hilbert space,

HS , such that
∑

x(Ea
x)†Ea

x = 11S for all a.

We interpret the input A as the choice of an observable and X as the outcome of the measurement with respect
to this observable. Quantum theory determines the distribution of X conditioned on A, depending on the quantum
state ρS of the system to which the measurement is applied.

Definition 4. Given a density operator ρS on HS , the quantum measurement (A  X, {Ea
x}a,x, HS) is said to be

compatible with ρS if

PX|A(x|a) = tr((Ea
x)†Ea

xρS) ,

for all a and x. Likewise, a pair of quantum measurements (A X, {Ea
x}a,x, HS) and (B  Y, {F b

y}b,y, HT ) is said
to be compatible with ρST defined on HS ⊗HT if

PXY |AB(xy|ab) = tr
[(

(Ea
x)†Ea

x ⊗ (F b
y )†F b

y

)
ρST

]
,

for all a, b, x and y.

We describe the process of choosing a value A as a pair of SVs, OA  A, where OA is called the trigger event (OA

may be a constant). The process is considered free if the outcome A is not correlated to anything that existed before
the trigger event OA in any reference frame.

Definition 5. Given a set of SVs Γ, a free choice (with respect to Γ) is a pair of time-ordered SVs, OA  A, such
that A is statistically independent of the collection Γ′ := {W ∈ Γ : OA 6 W}, i.e., PAΓ′ = PA × PΓ′ .

Quantum-Mechanical Description of the Measurement Process

Before stating our assumptions, let us briefly recall the quantum-mechanical description of a measurement process.
Most generally, a quantum measurement on a system S is described by a family {Ex}x of operators acting on a Hilbert

1 A note on notation: we will use upper case to represent random variables or SVs and lower case to represent specific values taken by
such variables.
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space HS such that
∑

xE
†
xEx = 11. If the state of S before the measurement is given by a density operator ρS then

each possible outcome X = x has probability

PX(x) = tr(E†xExρS) .

(Note that this is reflected by Definitions 3 and 4.) Furthermore, conditioned on this outcome, the state of S after
the measurement is

σ
(x)
S =

ExρSE
†
x

PX(x)
.

Averaged over all outcomes, the state is therefore given by σS = E(ρS), where E is the trace-preserving completely
positive map (TPCPM) defined by

E : ρS 7→ σS =
∑
x

PX(x)σ
(x)
S =

∑
x

ExρSE
†
x .

The TPCPM E can be seen as part of an extended TPCPM Ē : ρS 7→ σSDR (in the sense that E = trDR ◦ Ē) which
specifies the joint state σSDR of S, the measurement device, D, and possibly (parts of) the environment, R, after the
measurement (one may think of Ē as describing the joint evolution that the system S, measurement device D and the
environment R undergo during a measurement). By choosing a sufficiently large environment, we can always take Ē
to be an isometry. Since the measurement outcome X is determined by the final state of the measurement device D,
there exists a family of mutually orthogonal projectors {Πx}x on the associated Hilbert space HD, where each Πx

projects onto the subspace containing the support of the state of D corresponding to outcome X = x. Formally, this
corresponds to the requirement that

∀x : trDR

[
Ē(ρS)(11S ⊗Πx ⊗ 11R)

]
= ExρSE

†
x . (S1)

Assumptions

To formulate our assumptions as well as our main claim, we consider an arbitrary quantum measurement

(A X, {Ea
x}a,x, HS) (S2)

with constant input A = ā and output X. Furthermore, we consider two SVs, C and Z, such that C  Z, which
model the access to extra information provided by a potential extended theory.

Our first assumption demands that the measurement we consider is correctly described by quantum mechanics.

Assumption QMa. There exists a pure quantum state ρS which is compatible with the quantum measurement (S2).

For the next assumption, let Ē : ρS 7→ σSDR be an isometry from HS to HS⊗HD⊗HR and let {Πx}x be a family of
projectors such that (S1) holds for the operators {Eā

x}x specified by the measurement (S2).2 The isometry Ē models
the joint evolution of the system, S, on which the measurement (S2) is carried out, the measurement device, D, and
the parts of the environment, R, that may have been affected by the measurement.3 We then consider arbitrary
measurements {F a

x }a,x and {Gb
y}b,y on the subsystems D and SR, respectively, with the property that F ā

x = Πx.

The following assumption demands that the statistics produced by these additional measurements are as predicted
by quantum theory. Furthermore, the outcome X of the initial measurement (S2) can be recovered by measuring (in
an appropriate basis) the state of the device D used for this measurement.

Assumption QMb. For appropriately defined SVs A′, X ′, B, Y , the quantum measurements (A′  X ′, {F a
x }a,x, HD)

and (B  Y, {Gb
y}b,y,HS⊗HR) are compatible with σSDR = Ē(ρS). Furthermore, the measurement on D is consistent

with the initial measurement (S2), in the sense that X ′ = X whenever A′ = A = ā.

2 There are many ways to choose Ē and {Πx}x with this property; our next assumption need only hold for one such choice.
3 Note that, for (S1) to hold, it is sufficient that Ē describes the interaction between S and D (and possibly R) on a microscopic scale

and for a short time. Hence, the fact that Ē is an isometry does not preclude subsequent “collapse” of the wave function.
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While the above assumptions are essentially consequences of the requirement that the existing quantum theory is
correct, our last assumption demands that the measurement settings can be chosen freely.

Assumption FR. There exist SVs OA, OB and OC with OA  X ′, OB  Y and OC  Z spacelike separated
such that OA  A′, OB  B and OC  C are free choices with respect to {A′, B,C,X ′, Y, Z}, and all possible values
of A′ and B are taken with nonzero probability.

Main Claim

Theorem 1. If the quantum measurement (S2), modelled by the pair A X, and the additional information, C  Z,
are such that Assumptions QMa, QMb and FR are satisfied then the Markov chain condition X ↔ (A,C)↔ Z holds.

PART II OF THE PROOF

In this section, we prove the core inequality of Part II of our proof, Eqn. 8 in the Methods, which is stated as
Lemma 1 below.

Recall the bipartite scenario described in the main text. The measurements at each site are parameterized by values
A ∈ {0, 2, . . . , 2N − 2} and B ∈ {1, 3, . . . , 2N − 1} for some N ∈ N, and their respective outcomes, X and Y , are
taken to be binary. The measurements give rise to a joint probability distribution PXY |AB from which we quantify
the correlations relevant for our statement in terms of IN defined by

IN (PXY |AB) := P (X = Y |A = 0, B = 2N − 1) +
∑
a,b

|a−b|=1

P (X 6= Y |A = a,B = b) .

We consider enlargements of this probability distribution, PXY Z|ABC (see Figure S1), that satisfy the non-signalling
property (cf. Part I of the proof), i.e.,

PXY |ABC = PXY |AB (S3)

PXZ|ABC = PXZ|AC (S4)

PY Z|ABC = PY Z|BC . (S5)

The claim is that any such extension approximately satisfies PZ|abcx = PZ|abc, i.e., Z is independent of X for any
choices of a, b and c. The accuracy of the approximation is measured in terms of the variational distance. For two
distributions, PX and PY over identical alphabets, this is defined by D(PX , PY ) := 1

2

∑
i |PX(i)− PY (i)|.

Lemma 1. For any non-signalling probability distribution, PXY Z|ABC , we have

D(PZ|abcx, PZ|abc) ≤ IN (PXY |AB) (S6)

for all a, b, c, and x.

The proof is a generalization of an argument given in [15], which develops results of [20] and [24].

Proof. We first consider the quantity IN evaluated for the conditional distribution PXY |AB,cz = PXY |ABCZ(·, ·|·, ·, c, z),
for any fixed c and z. The idea is to use this quantity to bound the trace distance between the conditional distribution
PX|acz and its negation, 1− PX|acz, which corresponds to the distribution of X if its values are interchanged. If this
distance is small, it follows that the distribution PX|acz is roughly uniform.

Let PX̄ be the uniform distribution on X. For a0 := 0, b0 := 2N − 1, we have

IN (PXY |AB,cz) = P (X = Y |A = a0, B = b0, C = c, Z = z) +
∑
a,b

|a−b|=1

P (X 6= Y |A = a,B = b, C = c, Z = z)

≥ D(1− PX|a0b0cz, PY |a0b0cz) +
∑
a,b

|a−b|=1

D(PX|abcz, PY |abcz)

= D(1− PX|a0cz, PY |b0cz) +
∑
a,b

|a−b|=1

D(PX|acz, PY |bcz)

≥ D(1− PX|a0cz, PX|a0cz)

= 2D(PX|a0b0cz, PX̄) . (S7)
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The first inequality follows from the fact that D(PX|Ω, PY |Ω) ≤ P (X 6= Y |Ω) for any event Ω (see Lemma 2 be-
low). Furthermore, we have used the non-signalling conditions PX|abcz = PX|acz (from (S4)) and PY |abcz = PY |bcz
(from (S5)), and the triangle inequality for D. By symmetry, this relation holds for all a and b. We hence obtain
D(PX|abcz, PX̄) ≤ 1

2IN (PXY |AB,cz) for all a, b, c and z.
We now take the average over z on both sides of (S7). The left-hand-side gives∑

z

PZ|abc(z)IN (PXY |AB,cz) =
∑
z

PZ|c(z)IN (PXY |AB,cz)

=
∑
z

PZ|a0b0c(z)P (X = Y |a0, b0, c, z) +
∑
a,b

|a−b|=1

∑
z

PZ|abc(z)P (X 6= Y |a, b, c, z)

= P (X = Y |a0, b0, c) +
∑
a,b

|a−b|=1

P (X 6= Y |a, b, c)

= IN (PXY |AB,c) , (S8)

where we used the non-signalling condition PZ|abc = PZ|c (which is implied by (S4) and (S5)) several times. Further-
more, taking the average on the right-hand-side of (S7) yields

∑
z PZ|abc(z)D(PX|abcz, PX̄) = D(PXZ|abc, PX̄×PZ|abc),

so we have

2D(PXZ|abc, PX̄ × PZ|abc) ≤ IN (PXY |AB,c) = IN (PXY |AB), (S9)

where the last equality follows from the non-signalling condition (S3).
Inequality (S9) and the relation D(PX , QX) ≤ D(PXY , QXY ) imply D(PX|abc, PX̄) ≤ 1

2IN (PXY |AB), and hence∣∣PX|abc(x)− 1

2

∣∣ ≤ 1

2
IN (PXY |AB) (S10)

for all a, b, c and x. Furthermore, since

2D(PXZ|abc, PX̄ × PZ|abc) =
∑
z

∣∣PXZ|abc(0, z)−
1

2
PZ|abc(z)

∣∣+
∑
z

∣∣PXZ|abc(1, z)−
1

2
PZ|abc(z)

∣∣,
and both terms on the right-hand-side are equal, using (S9) we have∑

z

∣∣PXZ|abc(x, z)−
1

2
PZ|abc(z)

∣∣ ≤ 1

2
IN (PXY |AB),

for all a, b, c and x. Combining this with (S10) gives

D(PZ|abcx, PZ|abc) =
∑
z

∣∣1
2
PZ|abcx(z)− 1

2
PZ|abc(z)

∣∣
≤
∑
z

∣∣1
2
PZ|abcx(z)− PX|abc(x)PZ|abcx(z)

∣∣+
∑
z

∣∣PX|abc(x)PZ|abcx(z)− 1

2
PZ|abc(z)

∣∣
=
∑
z

PZ|abcx(z)
∣∣1
2
− PX|abc(x)

∣∣+
∑
z

∣∣PXZ|abc(x, z)−
1

2
PZ|abc(z)

∣∣
≤ IN (PXY |AB) .

This establishes the relation (S6).

Lemma 2. Let X and Y be random variables jointly distributed according to PXY . The variational distance between
the marginal distributions PX and PY is bounded by

D(PX , PY ) ≤ P (X 6= Y ) .

Proof. Let P 6=XY := PXY |X 6=Y be the joint distribution of X and Y conditioned on the event that they are not equal.
Similarly, define P=

XY := PXY |X=Y . We then have

PXY = p6=P
6=
XY + (1− p6=)P=

XY
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where p6= := P (X 6= Y ). By linearity, the marginals of these distributions satisfy the same relation, i.e.,

PX = p6=P
6=
X + (1− p6=)P=

X and PY = p 6=P
6=
Y + (1− p6=)P=

Y .

Hence, by the convexity of the variational distance,

D(PX , PY ) ≤ p6=D(P 6=X , P
6=
Y ) + (1− p 6=)D(P=

X , P
=
Y ) ≤ p 6= ,

where the last inequality follows because the variational distance cannot be larger than one, and D(P=
X , P

=
Y ) = 0.

PART III OF THE PROOF

In this section we give the proof of the final part of Theorem 1.4 We use the setup and assumptions as formulated
at the beginning of the Supplementary Methods. In Parts I and II of the proof (see the main text and the previous
section) we showed that for all a, b, c and x, the relation PZ|acx = PZ|ac holds for projective quantum measurements
compatible with one half of a maximally entangled state (cf. Lemma 1 and recall that for such measurements, the
quantity IN can be made arbitrarily small for sufficiently large N). Part III, explained here, extends this claim to
arbitrary states (not necessarily maximally entangled ones) and arbitrary measurements.

The argument proceeds in two steps. The first is to reduce the problem to a situation where the measurement
outcome is essentially uniform. Let (A  X, {Eā

x}x, HS) be the quantum measurement under consideration (where
the input A = ā is fixed). The idea is that we can always append a second measurement, generating X̄, such that the
distribution of the joint output (X, X̄) is flat (to any desired accuracy).

Lemma 3. Let ε > 0 and let ρS be an arbitrary density operator on HS. For any measurement on S there exists an
additional measurement such that the joint output distribution of (X, X̄), obtained by applying the two measurements
sequentially to ρS, has distance ε to a flat distribution.

Proof idea. It is easy to see that any probability distribution can be turned into an approximately flat one by adding
an additional random process that “splits” each probability into sufficiently many smaller events. Furthermore, any
such random process can be obtained by an appropriate choice of projective measurement (in a sufficiently large
Hilbert space).

Let {Eā
x,x̄}x,x̄ be the set of measurement operators corresponding to the measurement (A (X, X̄), {Eā

x,x̄}x,x̄, HS)

which generates the pair (X, X̄), and let ρS be a pure quantum state compatible with this measurement (see Assump-
tion QMa). Next, we introduce projectors {Πx,x̄}x,x̄ and an isometry Ē such that σSDR = Ē(ρS) satisfies

trDR((11S ⊗Πx,x̄ ⊗ 11R)σSDR(11S ⊗Πx,x̄ ⊗ 11R)) = Eā
x,x̄ρS(Eā

x,x̄)† .

(Note that the isometry can always be defined such that the projectors Πx,x̄ have rank one.) According to Assump-
tion QMb we can append additional quantum measurements (A′  (X ′, X̄ ′), {F a

x,x̄}a,x,x̄, HD) (with F ā
x,x̄ = Πx,x̄)

and (B  Y, {Gb
y}b,y, HS ⊗ HR), such that the output statistics are compatible with σSDR. Furthermore,

(X ′, X̄ ′) = (X, X̄) whenever A′ = ā. Finally, by Assumption FR we can take A′ and B to be free choices with
OA  (X ′, X̄ ′), OB  Y , and OC  Z spacelike separated (where OA, OB , and OC are the trigger events for A′, B,
and C, respectively).

Since the outcomes (X ′, X̄ ′) of the measurement (for A′ = ā) are almost (up to an arbitrarily small distance ε)
uniformly distributed, and the state σSDR is pure, it must be (almost) maximally entangled between the measurement
device, HD and the remaining systems, HS ⊗HR (by a suitable choice of the additional measurement, we can always
take this to be maximally entangled over an integer number of two-level systems). Furthermore, {Πx,x̄}x,x̄ are
orthogonal projectors. Hence, by a suitable choice of the additional measurements producing (X ′, X̄ ′) and Y , the
argument given in Parts I and II of the proof implies that, for any ε > 0 and for all c, x and x̄,

D(PZ|A′=ā,cxx̄, PZ|A′=ā,c) ≤ ε .

Since the values of (X, X̄) and (X ′, X̄ ′) coincide for A′ = A = ā (cf. Assumption QMb), we have

D(PZ|A=ā,cx, PZ|A=ā,c) ≤ ε .

This relation holds for all ā, and, since ε can be arbitrarily small, establishes the desired Markov chain condition
PZ|A=ā,cx = PZ|A=ā,c.

4 The proof we give here is similar to an argument given by Zurek [27] to derive the Born rule starting from unitarity.
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REMARKS ON THE NOTION OF LOCALITY

Here we make some comments about the notion of locality. The main point is to highlight that Bell’s notion of
locality is similar to, but slightly less general than, the non-signalling nature of the extension (as derived in Part I of
the proof).

To quote Bell [2], locality is the requirement that “...the result of a measurement on one system [is] unaffected by
operations on a distant system with which it has interacted in the past...” Indeed, our non-signalling conditions reflect
this requirement and, in our language, the statement that PXY Z|ABC is non-signalling is equivalent to a statement that
the model is local (see also the discussion in [28]). (We remind the reader that we do not assume the non-signalling
conditions, but instead derive them from the free choice assumption.)

In spite of the above quote, Bell’s formal definition of locality is slightly more restrictive than these non-signalling
conditions. Bell considers extending the theory using hidden variables, here denoted by the variable Z. He requires
PXY |ABZ = PX|AZ ×PY |BZ (see e.g. [13]), which corresponds to assuming not only PX|ABZ = PX|AZ and PY |ABZ =
PY |BZ (the non-signalling constraints, also called parameter-independence in this context), but also PX|ABY Z =
PX|ABZ and PY |ABXZ = PY |ABZ (also called outcome-independence). These additional constraints do not follow
from our assumptions and are not used in this work.

A possible reason for the discrepancy is that Bell principally considered extended theories which are deterministic
given the hidden variables. In this case, the distinction between Bell’s notion of locality and the non-signalling
conditions we use is unimportant: if X is deterministic given A and Z, then PX|ABY Z = PX|AZ follows automatically.
In fact, the converse also holds: given parameter-independence and outcome-independence a necessary condition for
the model to recreate the quantum correlations arising from measurements on a maximally entangled state is that it is
deterministic given the hidden variables. To see this, note that for any measurement A = a, there is a corresponding
measurement B = ba such that quantum theory predicts identical outcomes. In other words, PX|abayz = δx,y. The
assumptions of parameter-independence and outcome-independence give PX|az = PX|abayz, and so PX|az(x) = δx,y.
This implies that X and Y are determined given A and Z.

CANDIDATE EXTENSIONS BASED ON SIMULATIONS OF QUANTUM CORRELATIONS

It has been shown in a number of ways that quantum correlations can be simulated from other resources. For
example, all correlations generated by projective measurements on a maximally entangled pair of qubits can be
simulated by shared randomness and one bit of classical communication [29], or by shared randomness and a non-
local box [30] (a hypothetical device with stronger-than-quantum correlations [31, 32]). Furthermore, these results
have been generalized to arbitrary (not necessarily maximally entangled) pure states [33].

Since such simulations recreate quantum correlations, they may appear at first sight to be extensions of quantum
theory. We will not provide an exhaustive treatment of all such models, but instead give a short explanation as to
why the examples above do not contradict our claim.

First note that the ability to simulate quantum correlations does not imply the ability to predict the outcomes of a
genuine quantum experiment. However, when thinking about these simulations in the context of extending quantum
theory, the hypothesis is that the components of the simulation really exist and are used to generate outcomes.

The case where communication is needed is analogous to de Broglie-Bohm theory [16, 17] (discussed in the main
text). In order that the simulation can work in the case of spacelike separated measurements, the communication
bit, Z (which depends on one of the measurement choices, say A), must propagate faster than light. The bit Z is
therefore accessible outside the future lightcone of A. According to Assumption FR, it must be possible to choose A
to be independent of this (now pre-existing) information, which would no longer be the case. Such models therefore
contradict Assumption FR.

In the model of [30], where a non-local box is used for the simulation, even with full access to this box, there is no
better way to predict the measurement outcomes. To see this, note that the output, X, of a measurement specified
by a parameter, A, is generated in the simulation by xoring a shared classical value with the output of a non-local
box, whose input depends on A. Since the individual outputs of a non-local box are uniform and random the same
is true for X. Hence, while the simulation recreates the correct quantum correlations, it does not extend quantum
theory in the sense of providing any extra information about future measurement outcomes. It is hence in agreement
with Part II of the proof

However, because it recreates the quantum correlations, the simulation provides more information about the out-
comes of joint measurements. To see that this is incompatible with quantum theory, one would need to apply Part III
of our argument, using a description of how the model evolves under reversible operations. Such a description is not
given in the above model and, furthermore, in consistent theories which permit non-local boxes [34] the reversible
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dynamics are known to be trivial [35]. They cannot therefore result in a state whose statistics are consistent with
those from a quantum evolution, and hence contradict Assumption QMb.
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